Fixed point Theorems for Non-self mappings with nonlinear contractive condition in strictly convex FCM-spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theorems for $alpha$-contractive mappings

In this paper we prove existence the common fixed point with different conditions for $alpha-psi$-contractive mappings. And generalize weakly Zamfirescu map in to modified weakly Zamfirescu map.

متن کامل

Common Fixed-point Theorems for Nonlinear Weakly Contractive Mappings

The Banach contraction principle is one of the pivotal results in the metric fixed-point theory. It is a popular tool for the solution of existence problems in various fields of mathematics. There are several generalizations of the Banach contraction principle in the related literature on the metric fixed-point theory. Ran and Reurings [15] extended the Banach contraction principle in partially...

متن کامل

Common Fixed Point Theorems for Nonlinear Contractive Mappings with CLRg Property in Fuzzy Metric Spaces

In this paper, we prove several common fixed point theorems for nonlinear mappings satisfying the GLRg property with function φ in fuzzy metric spaces. In these fixed point theorems, the very simple conditions are imposed on the function φ. Mathematics Subject Classification: 54E70; 47H25

متن کامل

On Fixed Point Theorems for Contractive-type Mappings in Fuzzy Metric Spaces

In this paper,  we provide two different kinds of fixed pointtheorems in  fuzzy metric spaces. The first kind is for the fuzzy$varepsilon$-contractive type mappings and  the second kind is forthe fuzzy order $psi$-contractive type mappings. They improve thecorresponding  conclusions in the literature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Indonesian Mathematical Society

سال: 2020

ISSN: 2460-0245,2086-8952

DOI: 10.22342/jims.26.1.731.1-21